

Outline

- > EIC Physics Highlights
- Detector Concept
- > Detector Performance

EIC Physics

Distribution of quarks and gluons and their spins in space and momentum inside the nucleon

Parton transverse motion in the nucleon

Spatial distribution of partons and parton orbital angular momentum

QCD in nuclei

Gluon saturation

Nuclear modification of parton distributions

Propagation/Hadronization in nuclear matter

Nucleon Helicity Structure

Inclusive DIS
Semi-Inclusive DIS

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \left[\Delta q + \Delta \overline{q} \right] + \Delta g + L$$

1/2 - Gluon

Spin puzzle will be solved

Parton transverse motion in the nucleon

Semi-Inclusive DIS

Transverse Momentum Dependent PDF

Sivers: links parton's intrinsic motion to the spin of the proton => connection to the parton orbital motion

Greatly expand x&Q² coverage

High luminosity => fully differential analysis over x, Q^2 , z and P_{hT}

Also for gluon Sivers: L.Zheng et al, PRD98, 034011

Parton spatial distribution: nucleon tomography

Also see talk by S. Fazio

Exclusive DIS

Generalized Parton Distributions (GPD)

Connected to parton orbital angular momentum

Existing data are either at low Q² or have sizable stat. uncertainties

Provide data in wide x&Q²

Precise imaging requires higher e-beam energy and luminosity

Gluon Saturation

$Q_s^2(x) \propto \left(\frac{A}{r}\right)^{1/3}$

Color Glass Condensate (CGC)

High gluon density matter

Direct consequence of gluon
self-interaction in QCD

Saturation effects are greatly enhanced in eA collisions:

Collider energy -> low x Heavy lons -> high A

Diffractive: $\sigma_{diff} \sim (xG)^2$

T.Toll and T.Ullrich, PRC87, 024913

Color Propagation and Hadronization

Semi-inclusive eA

Probe color neutralization and hadronization

Different time&distance probed by varying
nuclear size and parton energy

Previous experiments are limited by low v, Q² eRHIC:

Much larger range of v, Q² Wide range of nuclear size

eRHIC

ep/eA

Existing RHIC complex for p/A with added electron ring

Energy:

Electron: up tp 18 GeV

Proton: up to 275 GeV

Ions: up to 110 GeV

 \sqrt{s} : 20–140 GeV

Polarization:

Electrons: 80%

Protons and d/3He: up to 80%

Luminosity:

Up to 10^{34} cm⁻² s⁻¹

Detector Concept

Inclusive DIS and scattered electron measurements

With focus in e-going direction and barrel

High resolution EMCal and tracking; minimal material budget

Additional eID with RICH and/or HCal

Semi-inclusive DIS and hadron ID

Needed in the whole rapidity range $-4 < \eta < 4$

Different detector technologies in different kin. regions

Exclusive DIS (DVCS etc.)

EMCal and tracking coverage in -4< η <4

High granularity EMCal in e-going direction

Roman Pots in h-going direction

Diffractive

Rapidity gap measurements: HCal h-going direction

ZDC in h-going direction

eRHIC Detector: BEAST

A general purpose EIC detector

- The more close to 4π acceptance the better
- Pseudo-rapidity coverage of +/-4 or so
- Low material budget
- Reasonably high momentum resolution
- Reliable electron ID
- Good p/K/p separation
- High spatial resolution of primary vertex

Also beam line detectors (included in IR design) for:

- Recoil protons
- Low Q2 electrons
- Neutrons in h-going direction
- Luminosity and polarization measurements

eRHIC Detector: EIC-sPHENIX

Based on sPHENIX (barrel solenoid, tracking and calorimetry)

Augmented with central PID, and forward/backward tracking, calorimetry and PID

Magnetic Field and Tracking

Trackers (-4< η <4):

TPC and MAPS in barrel

GEMs in forward and backward

A part of sPHENIX

Ongoing EIC R&D (eRD6)

e-going: electron ID (E/p) and h[±] tracking

Barrel: lower mom. tracking (<10 GeV/c)

h-going: h[±] tracking and ID

EM Calorimetry

$-4 < \eta < 4$

e-side EMCal:

 $\sigma_E/E \sim 2\%/\sqrt{E}$

 $\sigma_{\rm X} < 3$ mm/ \sqrt{E}

PbWO₄ crystal

Similar to PANDA endcap design

Ongoing EIC R&D (eRD1)

Barrel EMCal:

 $\sigma_E/E \sim 13\%/\sqrt{E}$

sPHENIX EMCal

Tungsten-fiber

A part of sPHENIX

h-side EMCal:

 $\sigma_{\rm E}/{\rm E} \sim 12\%/\sqrt{\rm E}$

Pb-fiber

Ongoing EIC R&D (eRD1)

- Scattered electron measurements
 High resolutions in e-going direction required
- Vector meson and photon measurements
 Wide coverage required

Hadron Calorimetry

 $-1 < \eta < 4$

Barrel HCal: Forward HCal:

 $\sigma_{E}/E < 100\%/\sqrt{E} \qquad \qquad \sigma_{E}/E < 100\%/\sqrt{E}$

Steel & Scintillator Steel & Scintillator

A part of sPHENIX

Ongoing EIC R&D (eRD1)

- Rapidity Gap for Diffractive
- Assist to PID and high momentum hadron measurements
- \triangleright In BEAST, also for eID in e-side -4< η <-1

Hadron PID

Active ongoing EIC R&D (eRD14) for all detector options

 $-4 < \eta < 4$

Quark Helicity, TMDs, Hadronization

Tightly coupled to high resolution momentum measurements in forward rapidity

See also talk by M.Chiu

Beamline Detectors

A part of IR design

See talk By C. Montag

- Recoil protons
- Low Q² electrons
- Neutrons in h-going direction
- Luminosity and polarization measurements

Detector performance evaluation

Generators:

PYTHIA, MILOU (for DVCS), RAPGAP (diffractive), RADGEN (rad. effects), Sartre (diffractive ep/eA)

GEANT4 description of EIC-sPHENIX

Simulation and analysis software common with sPHENIX

Experience from previous DIS experiments:

SLAC, CERN, DESY, Jlab

Inclusive DIS and Kinematics

Scattering mainly in e-going direction and barrel

Reliable electron identification in the whole kin. range

SIDIS and Hadron PID

Important to provide PID coverage in wide kin. region

See talk by S. Fazio and A. Jentsch

Exclusive DIS

DVMP: J/ψ→ee

DVCS: scattered proton

Wide kin. coverage is crucial Scattered proton misses the main detector

⇒ A dedicated detector close to the beam line is required (Roman Pots)

Exclusive DIS

and far-forward proton detection

eA measurements

and far-forward neutron detection

Number of forward neutrons is sensitive to impact parameter and parton path length

L. Zheng et al, Eur. Phys. J. A (2014) 50: 189

Need to cover up to $\theta = 4-6$ mrad for farforward scattered neutrons => ZDC

=> part of IR design requirements at eRHIC

Low Q²

Scattered electron η vs Q^2

Low Q² events dominate the e+p cross section

Quasi-real photo-production E.g. photon partonic structure (X. Chu et al, PRD96, 0.74035)

Need dedicated scattered electron detector close to the beam line

$$Q^2 = 4E_e E_e \sin^2(\theta/2)$$

Need to cover Q²<0.1 GeV² => e.g. EMC and tracking planes => part of IR design requirements at eRHIC

Summary

Two eRHIC Detector design studies are on the table:

Closely follow the physics requirements as in the EIC White Paper

Based on proven/existing components or ongoing R&D

Implemented in full GEANT4 simulation

Beam line detectors are essential instruments for the EIC physics program

Backup